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EMBEDDINGS OF SU.C LN UNIFYING GCAUGE GROUPS

3
R. Slansky
Theorectical Divieiovn, Los Alamos Scientific Laboratory

Uaiversity of Californis:. Loz Alamos, New Hexico 87545
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1. [INTRODUCTION

It is an attractive spoculation to suppose that cach of Haturc's
funda-ental interactions may be deacribed nathenntlcally by a quantum field
theory based on a local symmetry. The gencralization of quantum eloctrodynamics

to include the weak interactions (through a local SU2 x U or perhaps a larger

1
group 1ike SU3 x Ul) has progldcd a framework for organizing huge quantities

of experimental duta.l Although the precise forn of th: theory fs not sectled
completely, the atratégy of aisuning. a Yang=Mills Lagrangian for hnderstnnding
Uuﬁk aml electromagnet ic phenonicna appearas to be correct. Not.so well expiorud'
is .qu:lntum chromodynamics, which is: the candidate theory of the strong inter-
actlons based on a local, unbroken SUJC.2 (The label ¢ , for color, denotes
the stronm gauge group, and Is used In nrder'td avold confusion with other
aaaned and ungauned SU] s that appear in particle physics.) The 8 bosons
(2luons) th mediate the strong interactions are assumed not to carry
vledtri. or weak charges.  Although critleal tests of QCD are stlll lacking,

. . ¢
it successes inspire enough conf ldence that we shall assume here that SU is

3
the- corrvet theory of the strons Interactions. Thus the smallest gauge theory

that can describe clectromagnetic, weak, and strong interactions is based on

A Rroup Gu where
G o SU, v U Sy . (1)

ags eV .
. KU« Ul - BL‘ theory contain. three paapaes couplines and, ia order to
aocormodate present pheaomenabory, there must be wany multt iplets of quarks
w4 lept s thal tay alse conple to scalar and poendescalar ticlds.e  in the

content o contempor iy rode! buildiog (U s aecessary to appeal to hupe



quantities of experimental data to determine the arbitvary parametcrs and

1 x su; . At' beat such a

theory is a bit swkward. Mowsver, at present all efforts to overcome those

to assign ficlds to representations of Sllz x gy

probleil must be viewed asx highly speculacive, including the general i:ateaory
of wmodels to be discussed here.
The simplost (and proluihly roat nalve) scheme for unifylng the electro-

magnetic, weak, and strong Iinteractions Is the propoaal that SU, » U x SU ¢

2 1 3
is a proper subgroup of some grand local symsotry group 6.3 vhere

flavor c : c
D
c2o¢C x SU:' Sl.lz b U' x SU._‘ . . (2)
Gflavor is dciined by the requirenent taat cflav x50 taa maximal subproup

3
decomposaition of G. We shall assunc that G i3 a simple, compaci Lic¢ gproup:

G must be one of the classical groups, sun, Son. Sp, » or one of the 5

Zn
exceptional groups (.‘.2. I"’.. l".6. F.,. or EB « Som- ot the advant.ages ol such
a gauge theory are: (1) Many su, ~ l" x SU]C represeatad fons are grouped

fnto comparatively few representation: of G (2) Thire s only one gaug-
coupling amung the gauge bosons; (1) Somc of the partamecters that are
arbitrary in the SU2 X I.ll x SU;. theory become computable in a theory based

on G. (All of thesce advantages are truc of G » G theorbes, G gimnle, wher:-

we oL

the two factors are roelated by a disorete symretrev, The classificat lor o
G » 7 theories s sinilar to the one tor € simple; thes are consider ol

o
clsowhere. )
The first step v construcing A1t pouasible unitiod medel s baso d o

a simple G is to solve the cabhedlin: problen posed by 00 0O0) 0 Tae i

purposce of thia talk fs to classity W'l possible cmbode e o1 8L l(- in

el

| | LANYSS o

gimple Gi o that s, o Cind all passible fores of 6 A A RN TOE B B 2N A H D
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simplification in deoing this.) A more detalled exposition of the physics
derived from this classification is Included in Ref. 4. Befare procéeding
to the technical discussion, I think it is Important to review why the
unification provided by Eq. (2) should be corsidered quite speculative and
probably premature. (Of course the investigation of those models may provide
some insight into a better form of unification and so the present exercise
way be more than academic.) Here are some rcasons for the pessimi:a that
some simple G provides the correct unificatfon of SU2 x U1 X‘SU§:
(1) A theory based on a simple G is likely to contain huge mass h:ales.s

The gauge couplings to the unbroken scctors of the theory are measured at mass
scales of several GeV to be very different: ae = 3%7 and qs % 1/3 . For
unification there must exist a reforence mass, which will be of order of the
largest mass in the broken theory, alt.ove which as(ﬂ) = ae(H) . Renor@aliza-
tion group arguments show us that a(1) varies logarithmically, and so,
roughly, unification should occur at nmasses of order M ~ (few GeV) exp (aslue).
(Sce Ref. 5 for details.) Although the arguments that graad unification must
javelve masses above 1010 - 102O GeV are not completely rigerous, it is hacd
to aveid them in grand theories based on a sinple G, The dangers of
cxtrapolating present "mouledge to such hupge energies iu obvicus. Fyen if
the correct theory is in this class of models, there is need for experimental
guidince in choice of gauge groun and of particle representations; even the
scelection between ecconomical or more Rococe models i unclear,

(?) Thooe huge myes seales nmay overlap with those of gravity, which is
alao desrribed by a Kind of ecauee theoryv,  (The Mlanck mass m is 2~ 10‘(' GeV.)
Proper unification mav requive  cluding gravityy extended supergravity in one
such, proposal and is not conidoaed Iu-ra-.(’ This vuggests that the limitation
of the local algebraic <tructure te o cirmple Lie algebra may be overly

retrictivey this pocabiijty opean up linitless visttas for speculation.

(3)  Tv s comewhat ditficult to undorstand the orfgin of conservation



laws not associated with long range forces. For cxample, in the simplesat
unified models the proton is unstable, although the dccay rate may be
exceedingly small due to the huge mass scales. This raises the question,
are baryon number, muon number, etc., cxact comaservation laws, or are they
mercly approximate? Agaln adequate experimental guide is not available, and
it is not clear whether exact conservation laws should be required. [It is
possible to do so, Lut there is a price to pay.a]

(4) The symmetry breakdown from G to Ul X SU§ nust be quitce
complicated. If this is done by explicit Higgsism, then there will be scalar
fields that carry color and scalar-zluon couplings that are not asymptotically
free, Morcover onc Higgs representation breaks G only a little way, so more
representations are necessary. If the symmetry breakdown is dynamical, it is
c¢ven harder to assesis the situation with the present siate of understacding.

It is not yet possible to make a firm contact with the hypothetical
reality conjectured by these theorics. We npow turn to the well-defined
mathemat ical problem posed by Eq. (2): What arce all possible embeddings of

SU§ in a simple Lie group G?



11. EMBEDDINGS OF 5!13c IN A SIMPLE, COMPACT LIE GROUP

We assume thar the unifying gauge group G has o maximal subgroup
decomposicion of cthe form
flavor c _ o)

I x 503 .

We shall 1ist the cmheddings of SU:’c in G and classily the structure of

flavor

cflavor . rote hers that if G is larger than SU, ¥ U, . then

the new gonerators are coupled to hesons that nedlate interactions not vet ob-
served.  Tho senplenenrary flaver Sascas ate vither ot hish mass or else not
couplod sinnifican-ly to transitions betuween light, familiar particies. Other
nev hasony imnlied by this Find ol unification can iaclude diotons, wvhich are
color octets that also cur}y flaver; leptoquarks, which chacge quarks into lep-
tonsy  and diguarks, which change qaarks into antiquarks. It should be obvious

that an unstable proton is often predicted in this kind of unified theory.

The ficlds appcaring in the Lagrangian are assigned to representatioos of G.
The spin 4 fermion representation £ musit includr leptons (lc), quarks (EF)
and antiquarks (Ec); at present experiment does not suggest (he existence of
nev fernions transforming as higher SU: representations. Theorcetically there is
no objection to having fermions in nure complicated color representatioans; indeed
such fermiens are comnouplace in supersyrxetric theorices, Kevertheless, it is
usually the crue that seae set of fersions (Ghich might have spin 3/2, for en-
aple) belong to a represcatation containing only }t:. 1(‘ and 35\'. The

embedd Ingy procedure can be simplificd U we make (he provisoe that there nust



exist at least one non-trivial represcatation of G containing at most Lc, 3c

and gc. This means that some representation f of G, under the G[lavor x sy ”

3
decomposition, has the form
£ = s . C t ,C + _g c .
. ('.‘.1’1 ) + (93!2 ) (123'% ) . (!“)
where Qlﬁ g3ﬂ aud Qf are representaions of Gflavor. The following theorcm

provides the rationale for our embedding procedure: (The theorem will be

proved in the next section.)

1f any representation f of C decomposcd according to Eq. (3) is of

-~ ~

the form Eq. (4) then the fundamental reprosentation also contains at most

lc, 3¢ and 3°. (The fundamental representaions of the simple Lie groups are:

- -

n of SUn in of SOn; ?_Q_ of szn H Z of (.2 : gé of FI.; gz of I'.6 H

563 of E7 y and _2‘13{3 of HB )

Thus, we may steldy the cmbedding in terms of the fundamental

representation n, which is not necessarily the fermion representation, with

-~

Gf.l:wor x Sll; dcecomposition of the form,

) LIRS (.rl]t ;lc) ‘+ (l!3’ —3.(.) + (.‘,3’ jjc) ’ (5)

Cflavur

vhere Ryrnq and )iy are representations of .
The generators of G belong to the adjoiat representation Adj(C), anc
its color content {s casily obtained from that of the fundamwental represeatation

flavor
(sve Table 1), With the G YT« SL'(; embedding, Adj(G) has the form,

Adj(C) = (Adj((;fluvm' ) ,l,c) +Q, _Sc) t oeross torves )



vhere the cross—-terms correspond to the generators of G that mix flavor and

color, except in one case for SUn. With r; and n_ both different from zero,
3

Adj(G) includes two (1, §c)'s, vhich generate an SU,; x SU; subgroup of SUn.
The sum of the corresponding generators generates SU?. There is then a temptatior

to enlarge the (olor group to SU; x SU;, although doing so is optiocnal. We

Gflavor

identify by explicit cxamination. 1t is then straightforward to

determine the other representatiovns of G that satisfy our color restrictions.
The whole procedure can be generalized by considering cmbeddings

f1: .
oG lavor X SUg with progressively more and more relaxed color restrictions

r'd
on the fundamental represcatations and on the others to be used for the

fermions, but we do not do this here.

The structure of Gflavor falls into one of four classes. A list of
the simple groups, their fundamental representations, and the construction
aof the adjoint representation arce shown in Table 1.

Class 1: Gf]avorzcg X Gq b Ul s where Gz is a nontrivial simple
factor that transforms only the color singlets and Gq is another nontrivial
simple factor that transforms only the color triplets (and antitriplets) of
the fundamental reprcsentation.7 The U1 distinguishes lF from gc and
(or) 3?. This cmbedding occurs only if G is a classical group, i.e.,
if ¢ is SUn (unitary), SOn (orthogonal), or szn (symploctic). Only
the fundamental representations of G, which are shown in Talle 2, satisfy
the color restriction: n of SUn ;o0 of SOn; »or the 22 of szn.
Thus, the color singlets of the fundamental representation may be identified
with the leptons, and the color triplets with quarks. Sluce the quarks and
leptons have commut ing flavor groups, the observed universality of leptonic

and quark clectromagnetic and weak charges must come from the symmetry

breaking mechanism. The n  of SOn and the 2n o. szl are self-conjugate



represcentations, and therefore contain equal numbers of gc and zc
this embedding the n of SUn, which is complex, contains l‘ and 3
only. We now carry out the explicit construction of the results summarized
ia Table 2.

Consider SUn’ for which the fundamental representations is complex.

The simplest form of n is

4=

= (21”];’ lc) + (l’ 233 EC) ’ (7)

where n = n, + 3n1 and n, and n, are integers greater than 1. The

notation in Eq. (7) reflects the fact that this will be a Class I embedding.

Since this is a special example of Eq. (5) with n3 =0, it will not yield

the only embedding. However, as we shall see, the general case has new
features that should be discusced separately. The adjoint represcntation
of SUn, which is constructed from n x 5 - 1, provides the list of the

generators needed to identify the embedding:

- 1= (?1, 1,19 + (@, -1, 1% + (U, 1,19 + (1, 1, 8

~ T —~—~ -~ ~ o~ A~ ~ ~ o~

+ (21, N

~

1) + (ays ny, 39 + (1, ng—l, 8%y . (8)

Note that Eq. (8) includes no flavor cross terms that ave colar singlets, so

Gflavor

that is indeed given by

Cflnvor - sy x SU X U . 9)
n n 1

1 3



s s . c c . .
The U; distinguishes 1 and 3~ in the fundamental representation.

For ns3 > i, only the n of sun satisfies the restriction that no more

c .cC . . .
than 1, 3 and 3 occur in the fermion representation; the leptons are as-~

signed to (n;, 1, }c) and the quarks to (1, ns, Sc) of Eq. (7). ° The assign-

~

P

ey cy s . . 10
rent must be vectorlike in order to avoid divergences from triangle anomalies.

The fundamental representation of SOn is the vector representation n,

where n may be even or odd. Since n is self—conjugate, Qc and éc must
appear symmetrically, and Eq. (5) must be of the form,
n=(n,1, 15+ Q, n, 35 + @, n., 3°
Al Ay ~y Ras 2 ~9 33’ 3, (10)

. . . £ o
where n =mn; + 6n; and (m;, 1) is a self-conjugaie representation of G lavor

Herc we consider n; and nj3 greater than 1; as our notation indicates, this

. lavor |, . e < .
is a Class I embedding. Gf is identified from the adjoint representation,

@ xw, = (D, 1, 1)+ @031 19 ¢ L L 19 ¢ @, 1, 89

C =C
+ (E]; N3, é )+ (Bl’ N3, § ) +

e o (11)
+ {1: %n3(n3+1): 3 ] + [l: %na(n3+1)’ 3C]
c ' ————  =C
+ [l» 5y (ny7D), 6 } * [l’ eyt 9} >
and the flavor group is
fl..vor ) .
3 = 50 X S x U .
G ny Un3 1 (12)

. N d . =C .
The explicit U; in Eq. (12) ccunts 3's minus 37's in Eq. (00), and has
zero eigenvalue for the color singlet part of p. Ther~ are no other representa-

tions of SOn (nz > 1) that satisfy our color restriction.



1l

The most general form of 2n for SPZn consistent wiLh_Eq. (5) 1is

c c -~ =€ ; '
= (Zﬂl’ L, 1)+ Q, u3-.2 ) + Q, 331‘2 ), QA3
where n = n;+3n;. Because both 3 and § appear in 2n, all higher repfesen-
tations have at least gc and are ex:luded for fermions by our color -estric-

tion. The adjoint representation is obtained from (2n > 2n)_:

n(n+1) = (0 (20g#1), 1, 1) + (1, ng-1, 19 + (1, 1, 1) + (1, 1, 89

T Ay By S P A P = o Ay P P -~ ~ -y -~ -~ -~ -~ - ~

+ (znln Ny, ) + (2r,, na- 3 )

o

+ [1’ knﬂ(n3+1)s Ec] 1 %nB(n3+1) 6 ] N (14)

s g ey 2 s oy o oy s

o 2 - g T -~ o P oy g g

* [l %na(na'l), 3 J + [-’ in,(n;—l) 3 ]

+ (l n3_1 8 )

-y o~

which implies the Class I embedding,

flavor
G = Sp xSU xU, . : (15)
20 3

Class II: GI13VOT . Gy X Gy X G_ X Uy x Uy . This is possible only for G =
r
. c e
SU , with fermions assigned to the p, winere j contalns 3 q-type quarks and
n
c 3C .
EF T-type antiquarks. The two Ul's distinguish among lc, 3, and 3°. Tiis

enbedding is quite similar to Class I, but it contains some additional in-

- - v it
terest because therce 1s a temptat;on to enlarge the color group to Sb3 X SL3.



The coil will be placed below the surfzce of the easth where the
corpressive stresses in the rock are larger than the tencile stresses
produced by the magnet, The magnetic forces can be contained by rock to
keep the cost of the system low. The cost of steel bands to take the
force would far exceed that of cther types of storage systems. A set of
struts and rods, as shown in Fig, 7, is required to transmit the forces
from the coil at 1.8 K to the rock at about 300 K.

Tne stresses and deflectinns associated with the thermally induced
contracticn of the coil during cooldown and the magnetic Lorentz forces
on the conductor are taken up by rippling as shown at the top of the
figure. Axial loads are allowed to accumulate until they reach the al-
lowable stress in the conductor, about 138 MPa (20 000 psi), then they
are transmitted through struts to the rock. This is accomplished 1f the

coil is segmented and the central segments are stepped inward to a
slightly smaller radius.

Conductor

Superconductor for a SMES coil must be reliable (this includes but
is not limited to stability considerations), must cost as littie as pos-
sible, must be capable of being fabricated with existing techniques or
extensions of those techniques, and must be flexible enough to be wound
into a magnet in a 3-m-wide tunnel.

Operation at 1.8 K rather than at 4 to 6 K and the use of NbTi rath-
er than Nb,Sn keep the total system cost Tow. The use of high purity
aluriinun 1astead of copper as the current stabilizer is more economical
and reduces the size of the conductor,

REINFOACED COMAETE
LINER

B STABILIDING \
CABLES OR  COMPRESSION
L WENBERS

Fir. 7.
Coil and supp. . structure cross
section of a 10-uwh SMES unit.
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If Soth m; asad a3 of Eq. (3} are ota-2zery, the ad).-int comtains tve
coter octets aad the sast satwrsl echedding is w0t realiy of the ferw Tq. (3)
oinntln twe $°s ale proetaters of scparate 5§05 °s. The evicddiag should be
vritten ixltially as

L ]
ﬂ.’(ﬂ-‘tﬂ-.-ﬂﬁ'h'!.)!tﬂf > =% ae)

m_thc flavor growp has the structure of a Tlass XY erbedding

-

1 & F

Oaly the fundimeatal represcatatisn satisfies the color restricticns. The 3

cortaine =, Ilrstems, =, o guatks amd =3 o

-
- ~

quasis, vith = -

=n; ¢ In; ¢ h‘. Yimce p o* Sl:. is vzsafle fraa tricagle anacalies, the

fermion assign=ent ™ust de wotorlide; both Stf and SG: are peacrated by

westor currezts.  Comsequrniir there 1s 3 ToTPILlisa to e=laT.r the o2ler oToip.

0

So that bt ¢ axd r Quatis be coalined, the comveaticnal coler penera-

. f. - .
tors st be suwa: of the correspozding  SU, a=é Sl‘f renetaters. The «ipht

c - e
SUy gezerald s arc coaserved, but ticre are two Sirtizmel porsadilities for the

¢’ '
:

recainin, eizht SU; ® ot PemeTziots: eitnry thoy sre all broken, or they

are all (omeerved. 1€ exnly &0 i3 comserved wr oblain the usval strem; inter-

-

#02000 FIoo ¢ TTILRL the € wnd T qrithe wWauld T omfined M the tane set of
glvons, o T codvin o rpetr ¢ oenult - lole gmf 2md €r staten. 1€ tle i
browen stros . L0 CPrar wote Tha FOTT AT e oAT ther the ¢ and 1 Quales

-

weuld boe bogmd togeron by Jofioient retn ood gl Consrmgry Bl g :tates,

which 2 - “::2 ay {1, 3 el 2t t, wiole b o tarfited: $im tuT SentideTrlieae
Qs v QNf slaterl Tre g, 2T e heditar woulad ol oqaoie ditingt

frc. t . 1rr oand rr ©r . Posora ] e vmt S0 t.ealr fran Savoin: a.

(1. < (3. 5) 0f colir vl Ll Sovple g e x. vt
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N

plece of the fundamental representarion, bar the fermions are in a different

gflmr -

Class 111: x 331 . where L’g*i transiores the color sinslet

Wt

representartion such that the same siagie? factor Qg o transforms both guavks

and leprtoas. Thetre are 1o casesn:

IfTC= ?ﬁia, we may ignore the trivial case n, = 1 in Eq. (7) fét.

which all leptor~ have the =aue electric thorge, but an imteresting special

case occurs for aB'i aﬂ%-ai>3. Then n  becomes

L o C.

n={m, 1) -0, 3, {18)

-

with mn; = p=-3. The adjoiat rcpresentation is

izl s @izl 1) ¢ (1L )

-~ -

<

Ve (1L 8D (0, 39 ¢ e 3D L

vhich implics the cmbeding,

fquaticn (18) Ly d2.e¢l1f 4: net e dnlereat’ =0 candidate for th

KoweveT, our cvlor restiictios 1s ati-tivd for the represeatations of dirmo o

. n . . .. .
sion (L)' ohtained by matisys wtricie: o L tires,

S . ) (=1 c I N =y
(7:]) R D T S I Pl ), 3 ) (G R]
SUa R A ) AN AL AR
R
do oy )
l P ¢
. . S
TRV LCSRRE T RS S B PN i N 1% i } a7, Gyl s
;.
I3 z . lr}-| . .‘1 . [ . 3 Y .
N T . L0 IR 1 . a . 3 (: . A PR B S v vVole
(07), ] Oth el end of (e teste et o B Tt
- I3
R U SR U T it I . e e : i B : :
MR PR (RPN s vie AT e 0 e Tl . et [ S t: t e
n
A} L



The sacond Casc han & = Sﬂu. with a, - 1 ie Zq. (I0). W briefly
review the structure of the »pinar teptesentation. Twere Is one sclf-comlugste

spimor for mhﬂ of discasion 2. $3, has two ineqguivalest self-comjugate

£Y
-1
splonrs, wch of dimmmaion 21“ « avd the *wo spinots of !D‘.ﬂ are oompl x

and coajugate to onc anrother. Each has dimensior Ih.

Althaugh the structutre of the s;inof ropresentatioaz of ﬂ- dif{tets {ar
m cven and odd, the characteriration of their color contvnt Is slullar ensuth
to treal them togethar. Recal! whxt o echad saf throag.. the furd imeniar rop-

resentation, rg. (10). The Teguisv 2al that the apinor Téprosataticn oo ttaia

Jc. Je' asd :ic only ieplies the za~e for the fundamental represemtatior. e

. . dlavar ; .
first show that ny ~ 1 e iq. (1), 2 @ r Sh'._‘ L, owe wa give the
. < .. ) .
M)n_‘ x §U, dece-porition of the spinisa,

First consider 50 « Since the sniner of SO hiz oal 19, 3. %

rne ’ T ames o ¥ &el
| € - &
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2 e 120 0 CY e S s T (3}

The ptoef that the coler restriction on 3 roquires ny = 1 worka ilan
lor the wpimers of 30, . For u oid, ¢ is caplex and d=a ., me that

ucither ¢ * 7 mer O =" & cam hawe color represcatations of dimenaion greater

tihm &, ﬁlﬂn is possiblc omly I ry " } in Eq.(10). The same argusent

-

applies it = fs evem, altheagh ¢ and ' arc then selfl-conjug ¢ spinors
and puly ¢ * . mceds to 2atisfy 1T coler reztriction. The Llavor group i
L2t

€ - - O Uy, (24)

aive we Tie & Urass D31 @~ 3.

The S(":h_‘ » 80, foiuaositicos of the S-“,“ spim-r: are

o Ly ¢,

OB GRS BT GV S TN
"1‘ th- c'l "woet - g _
3% Sb‘ di-aenaciticos are
- ¢ e _
g Co) e ¢ e (oD e, Y (2%)
. c . .
S’ ’ (;.'. J_ ) . (.,.' L] ;“.) t (-.' -!r) ! "J' .:!‘) ) (?6)
A CE L S . Pt As betore, the U ol Eq. (24) ap-
Prote ba by Coae moelitd T S L
The s ' : o MOSE Ut wat ety the coror restrice
o, b . 7 a- LR Lath 1 o -'ir.
1. 27 o A . T e s ntara) sin
1 R . Ceotl L e st e relotion betoeen

L L Lot e o e o tien the e ety broatlieg,
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Class 1V: Gflavor d Gq+£. This c¢mbedding, which contains no-U, factor that

distinguishas lc fron }c, is poxsiblo only for tha cxceptional groups. Thrae
of the five exceptional groups satisfy our assusmptions, and in each case; only
the fundamental reptesentation'satisfies the color restriction. For F, ,
where Gflavor - 803 , the fundamental repreasentation is the 32' which 1a

sclf conjugate. The flavor group for E6 is SU3 X SU3 and the fermions are
assigned to the 21, which is'complex. For E7. Gflnvor = SU6 and the fermions
are assigned to the 22. which 1s self conjugate.

The restrictiveness of the exceptlonal groups, both in auuber and in
internal structure, makes them quite attractive for moduel bullding. The
universallty of the quark and leptonle weak and electromagnetic charges is
a conscquance of the group structure, as is the 1/3 integral charge structure
of the quarks if the leptons have charges *1 and 0 only.

Two of the exceptional groups fall outside our assumptiors. G, has rank 2,

. . flavor
and SlU; alone is a naximal subgroup; thus G

is trivial, lacking even a
U, for clectromagnetism., Eg has rank 8 and 248 generators., It is the only Lie
group for which the smallest representation is the adjoint; there are no repre-

scntations satisfying our color restriction.

F, hns rank 4 and 52 geuerators. SUS is enbedded by

¥, D su, x suac , (27)

£l
so thatG V0T SUJ. Only the amallest nontrivial represcntatlion patisfles the

color restrictious, LIke all othoer representations of P“. it Is scll con=-

Jugate:

26 v (8, 19 4 (3, 3+ G . (28)
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If the other SU, were the color proy,., thers vould be no 1y, repreacntations
satisfying our color constraint. Wiich ls proved in next section.

Su, x suf decomposition of the adjoint representation is
y =€
2=, 10+ Q)+ @ )G I (29

E¢ has rank 6 and 78 grocrators.  1ts fundimental vepresentation is co-

plex, and decomposcs as

273 31D QL MG LI GO

under the maxinmal subgroup decorpo-ition,

2 D (SL (X . su€
kb ( lj ¥ '"3) ® SU] . Q)
Eitker of the other SUy's could b ideutizicd on calor .
The adjolnt represcentatlon is
c c c
l-al-(-s.'l‘.l_)"(l'ﬁ‘l)’(lol'.‘!) (]2)

(o

13,3 (3,

The 2

i~

27 . . c .
and 27 are the eoly repoos. otations vith 10, ;r end 3€ only,

Ez has rank 7 and 133 poacvatere, e co'or e be o % - ided? 18

Ik, R sv1r . (v

- [ o l‘. . - I3
R U d\\\‘?li“' RIS B

Only the 56 satisfics ' cole re.iir. tios.: its 8§

—~—



The decomposition of the adjoint representation fs

i33 = (35, 15) + (1, 8% + (15, 3% + (15, 39 . (35)

P Sy

”

1t is also possible’ that the 803 1s embedded in the SU, subgroup of

E;- This could happen tn twe vays: (1) If SU613 SUJ x 803 x Ul, then the

96 decomposes to 27 + 27 + 1L+)of F.. Only the 56 satisfies our color

restricrions; (2) If SU6 D Sll3 x SUZ‘ then no E, vepresentation satisfies

our color reatrictions, which is proven In tie next section

Thore are no other embeddings of.su; in any simple G for which there
ia at lcnstlonc representation satisfying the 1?. 2?. ;f color restriction.

The clasalfication of the ferrioa roprescntations ls not coaplete until
wo analyze their bhelicity struclture. Fernions of a given chilrality are transforned
azong themsslves unaer G, which ve continue to as:qume to be simple.

Ve first stely the case where a scalar fermion aumber 1s defined, so that
fermlona and antifermions are Inttially dist Ingulshed.  Suppose the leit-

handed feriions are aszigned to _[l of G and the right-handed fermious to _l;‘, of G.

Then all Test=-tunded states are In _r:l + IR' and oLl right~handed states are in

ot _ll;l « It the quark-gluon couplings are Lo conserve parity, there must be a dis-

croete nyeestry that relates the quarks in ‘LI to thoso in ’tl" and also relates
. N

any ant iguar’. that ray be in _l_'l‘ to those 'n ’:‘.R' This sare discrete symmetry

will relate the 1 oatons in _l_" amd '[R' if we ignore the possibilicy of adding

Gouivplotn to elther f, or L Convoqueatly, £ and fR are either equivaleat
L] N o~

or elue redated by group conjuser ion, ‘Lheorles in vhich j',{ iz equivalent to

""l ave calle ! vertarlike. I, ic equivalent o jl: v wo call the theory
9 -~

flaver chiral.
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We now cxaﬁine the case vhove a scalar formion numiter caunot be defined; EL
contains all the left-handed fermions and aatiferalons of the theory, and ER
contains all the right-handed ones. Parity conservation in the quark-gluocil
couplings then inplies that the quaris in EL and LR are related by a discrete
symraetry. Af before the theory is either vectorlike or flavor chiral. In the

latter case (LR equivalent to £L)' there exists a pseudoscalar quantum number

that initially distinguishes fL and ER'

Further limitations on ER given EL follow from the renormalizability of the
theory. The theory must not have divergences due to Adler, Bell and
Jackiw triangle anomalies. The fermion representation falls into one of three
ca:egor1e53
(1) 1f LL is a self-conjugato represcenctation, there will never be any problem
with triangle anomalics. Such theories are always vectorlike.
(2) 1t LL is a eomplex representation but ¢ is not a unitary group, there is
again no problem with triangle anowalies. Tiese theorles are based ou G
E6 (L » 27) or 80(""_2 (L = spinor), and may be vectorlike or [lavor chiral.
(3) The complex represcatations of SU“ (n » 3) are unsafe, but may bu usﬁd
in a vectorlike theory, or in a nonvectorlike theory if there is an accl-
dental cancellatior of right- and left-han!cd anomalles scparatcly. (Tn

the lattor case LR is edquivalent to EL, where f

£, is reduclble.) When the

cancellation does take place, LL often appadrs as the brarnchliug of a safe

represcentation of a larger group. For example, the anomalies from the 5
and 10 of SUy cancel, vhere the decomposition of the spinor of 80, into
SU5 representations Is glven as 1 + 54 10, (The siopglet does not

contribute to the anomialy.)
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The results of this classification of the chiral structure of the
fermion representations are summarized in Table 6. Except for gauge groups
permitting a flavor chiral theory, it is most natural to assume a vegtorlike

theory.
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ITI. THE THEOREM&

We state and prove here the theorem that justifies the cmbedding proce-
dure followed in Sec. 1I. Consider any embedding of SU§ in a simple Lic
group G for which there is at least one represcntation f with color content
restricted to AF, g‘ and 3‘. Then‘thc fundamental representation of G must
also be limited to LF, Qc,-and zc. In other words, the condition tha~ the
fermion representation contains culor singlers, triplets, and possibly
antitriplets implies Eq. (5) ior the fundameatal representation. The
fundamc ntal representations of the simple Tie groups are: |
n or Sun; n of SO“; 2n of szn; 1 of C,; 20 of F,3 27 of Es 56 of 1-‘.7; and
248 of Ea.

The proof for the classical groups mer:cly requires findiung the color
content of the group generators, which is explicitly displayed by the adjoint
representation. Let ¢ be a sct of geacrators forming an irreducible representation

of SUZ. Since cach group generator must transform f within the reopresentation

~

[ 29"

. 1, C . . .
it is neccessary that ¢ acting on any $b3 representation in f contain at least one

of the color representations in £. If f has only color singlets, triplets and

c 3C . c .c 8
, 0T € % 37 must containa ]l , 3" or 3

12 0T

C
antitriplets, then ¢ X 17, ¢ X 3

~

. This
¢ [ c C

. c - ra o .
is truc only if ¢ is 17, y 37,67, 6" or 8 . Thus [ can satisfy the color re-

W

~

striction only if cach of the color representations in the adjoint G has dimension

less than or equal to 8,  The proof is completed by constructing the adjoint cepre-

sentat lon, which must satisfy this condition, from the fundamental representation.
Supposce the n ol SU“ violates oue color restriction, so that it containg

a set of operators d transforming as some highor repeesentation (dimension

. ¢ . . . R g
greater than 3) of vl The adjoint represeatation o S'Jn is nxn -1, so it

ALY

. o, . . e
includes generators traasforoing vnder St as the represeatations in d 2 d,

3
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vhich always contains a gzc. The theorem then follows for SUn. The proof
is similar for the orthogonal and symplectic groups. If the p (vector repre-
sentatfon) of SOn contains a set d as defined abave, then thcladjoint repre-
sentation, constructed from (n % Q)A, must include sets of gencrators that

transform as the representations in (d x g)A under'SU3. The theorem follows

since (d x Q)A always has at least one representation of dimension greater
than 8. The adjoint representation of szn is constructed from (2n X% 29)8,
and includes color operators in (¢ Mzg)s. As before, d must be empty if

(2n x Zp)s is to have no scts of generators that transform undar SU; as a

representation of dimension greater than 8.

There exist embeddings of sug in the exceptional groups where the funda-
mcntal represcntatjon is not restricted to lc, éc and zc’ but where the ad-
Joint contains no color representations of dimension greater than 8. The
previous proof must then be supplemented with some information nboutlthc

comnutation relations of the group generators. We consider each exceptional

group individuaily.

Threce cases are trivial. Since the 1 of 02 is sclf-conjugate, it must

decomposc to 1° 4+ 3% + 3% The decomposition of E6 into SU3 x SU3 x SU3

is essentlnlly symmetrical, and any SU_, may be color, as 13 clear from

3

Egs. (30) and (32). E8 is hopeless since the fundamental representation

is the adjuint, whlch must have an g°.

We might usc the other SU. of Lq. (27) as the color subgroup of F

3

The adjoint representation then has the decomposition,

4 .

52 ¢ (L, 8+ 8, 19+ 3,6 + 3, 5,

as can be seen froam Eq. (29). A color octet does appear in the
fundamental representation, Eq. (28), for this embuodding, so we must

prove that no higher representations satisfy our color restrictions.
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Consider the action of the generators transforming as (3, 6°) on the supposed f
higher representation of the form, (v, 1%) + (x, QF) + (i, Ec), %X and y any
representations of the flavor SU3. Since thesec generators annihilate the ?
pieces transforming as (y, lF) and (E} Et), they must not annihilate (i, }c).
However, we prove that they do. The generators ia (i, QF) must annihilate

(s, gc). All the commutation relations among these generators yield generators
in (2,'§F). Therefore the (3,6 ) gercrators must als; annihilate (z.gc) and the
representation cannot be of the supposced form. This completes the theorem for F4.
Suppose SUS 1s embedded in the SU¢ subgroup of E

3

color is i'entified with one of the SU3's in SU6 :)SU3 b SU3 X Ul’ then the

fundamental 36 of E7,undcr the decomposition E, 2 E, X Uy is 56 = 27 + 27 4+ 1+ 1

This has no higher color represcentations. The other possibility is to obtain

7 Eq. (33). If the

the sug from SU6 2 SU2 x sug. llere, higher color representatlons do occur
in the 5%, since the 20 of SU, decomposes as (g,gc) +(ﬁ,lc); Azain, we nmust
prove that no other E7 representatior satisfies the color restrictions. Under
_ c . . c ¢ v
Sug 2 su, x SU,, the only SU, representations restricted to 17, 37, 3~ are 1,
\ .
6 and E.; the SU3 x SU6 content of the supposed higher representation nwust

be (y, 1) + (x, 6) + (E; 6). The generators of £, include a set cz, 15), which

7
anuihilates (y, l) and (5, ﬁ)» since 12 X 6 does not have 1, 6 or 6. Moreover the
sct of gencrators formed by the counutators in (3.-i5) with itself also fall

inte the CE, 15) class, so that (5. 13) also annihilates (E} E). Thus there

is no faithful represcatation of the supposed Lype.
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The name "flavor chiral' is appropriate for E6 and SOlO , where ithe

flavor groups are SU3 X SU3 and SU2 X SU2 » respectively, and for the
simplest flavor chiral assignment the factors act chirally on the quarks.
For SOl4 R 3018 s+.+5 this name is less appropriate.

"Wectorlike" refers to theories where the representations of the left-
and right-handed fermions are equivalent; in flavor chiral theories, where
the representation is complex, they are conjugate to one another. This

classification is discussed near the end of Sec. II.



CNRLL 1. Ot Taxonomy
Grew  Wask  Order  bustmestsl  Comtruction
represeatat fon of adjoint
ST a -1 -1 -1 ) a=f-1
n
0y 4 " a(Zae D) e Gt V)]
soh n n(in - 1) b (p = h)a
S.‘zn n alln + D 2a (n ':-‘E)S
S 2 1- H QD -1l
A ‘ 82 2 (6 - 25, L+
F, 6 78 2771 27 > 27~ 1478+ 650
K, ? 133 3 (36 > 56) = 133 + 1463
Fo 5 28 (248 * 248), ~ 248 ¢+ 3038



TABRLY. 2
f Lavor i
Ciaws 1 ¢ o R
© > ctlavor x Sﬂg)
wnz o <
- >
8= (apdldh) ¢ (a3 " !
[«
2 a 2 -
sy (Sﬂ.l su . *x g ) x SL’ {n " + 3n3)
mII: [ o C - =
n = (51.1._1_ ) 4+ Q.g].} ) + (1.23.3 ) n, 1
D - . 1 . € -
sou (son‘ SU“l l‘) nb, (n " + 6n])
szn. . . - ..
2n - (20,.1.1%) 4 (1.n].3‘) ¢ (1,19
Spo, TSP, N SU AU )N su‘; (n - ny ¢ 30)

3

Only the fundamental repre-catation natisfic. the color restrictioa.

o — . ——_— ——— e sa—
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TABLL 3

———— —— - e —— . w - e e e e W A W B E————— —

N L R e y—— . R e el

Gf lavor

———r mmg— - — mad.a - —— . A o mw W o ma e - = o mER .

Class 11 «~G. ®C *G_*y =0
i qQ . ¢

n= (0009 4+ A,

“ - - -

(2

. . o x ¥H > < -
st 2 (M’"l .r.u“3 > stni L bl) = SU, (n n, +Iny ¢ ]ni)

(Note that there s a tcanptation to enlarge the color proup te Sl:] ¥ suU

3

A B o e e ————— . G- - — R R = = = M w o —aa e ® — - == L m e — - e e R A - W R —
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- 1 ]
Class 11 Cq+i »x Ul
(Clans 1 wodcls with ny o= 1)
Sl.ln: c c
n= (a-317) + (1,3
.c
SU_ D (SU . x U ) x St
Other representations satisfying the color restriction:
k - _ayK € _ k-1 (4
(n )A ((2‘3)“1 ) + ((2.3).\ » 30
+ (=-n*¥"23% ¢ (-n»E 0
.y A ~ A l\ ~
son= c c =0
n = (n-6,17) + (1,3°) + (1,3%)
. . <
SU“ 9 (hu“_b x Ul) ~ SU3
Other representatlons satisfylng the color restrictton:
0 = (1) + 0+ 05+ 6L

~ ~

o = (A1) 4 D)+ D)+ ELT)

(!, and ' are splaors of Su“_6; for n odd ¢ & )
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TABLE 5

Gflavor = G

Class IV qtl

26 = (8,17) + (3,3°) + (3,39

c
Fb o) SU3 x Sll3

E, 2
& 27 = (3,3,1% + (1,3,3%) + (3,1,3%)
. [
E6 o (bU3 X SU3) x SU3
E7: c [ - =C
56 = (20,17) + (€,3) + (6,3)
. . c
h7 D bUb s SU3

Only the fundamental representation satisfles the colovr reatriction.

- mee - e e B A 2 e e W AT B4 e GRIA e S A G i - U R R e . . A e g e G = W= hwm W AEm B . = = A e e —
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TARLE 6

- -—— e e——— ———

Classlfication of chical fermiun renresentationa

- . ———- mea

typeof tnsi tkﬁ:.
representation (vpctorlkkc) : (fiavor chirnl)

real possible identical to
vectorlike
complex possible possible
gafe®
complex | passible usually not
unsafe® possible

— e e m st t L ma e e e TR E B e mTRE v & - m e Pmm me % - firm R mA — R T W - e & G m ——— e em = A e - et —— o

*) Safe and unsafe from anomalies.



